Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random self-similar trees and a hierarchical branching process (1608.05032v4)

Published 17 Aug 2016 in math.PR, math.CO, and physics.geo-ph

Abstract: We study self-similarity in random binary rooted trees. In a well-understood case of Galton-Watson trees, a distribution on a space of trees is said to be self-similar if it is invariant with respect to the operation of pruning, which cuts the tree leaves. This only happens for the critical Galton-Watson tree (a constant process progeny), which also exhibits other special symmetries. We extend the prune-invariance setup to arbitrary binary trees with edge lengths. In this general case the class of self-similar processes becomes much richer and covers a variety of practically important situations. The main result is construction of the hierarchical branching processes that satisfy various self-similarity definitions (including mean self-similarity and self-similarity in edge-lengths) depending on the process parameters. Taking the limit of averaged stochastic dynamics, as the number of trajectories increases, we obtain a deterministic system of differential equations that describes the process evolution. This system is used to establish a phase transition that separates fading and explosive behavior of the average process progeny. We describe a class of critical Tokunaga processes that happen at the phase transition boundary. They enjoy multiple additional symmetries and include the celebrated critical binary Galton-Watson tree with independent exponential edge length as a special case. Finally, we discuss a duality between trees and continuous functions, and introduce a class of extreme-invariant processes, constructed as the Harris paths of a self-similar hierarchical branching process, whose local minima has the same (linearly scaled) distribution as the original process.

Summary

We haven't generated a summary for this paper yet.