2000 character limit reached
Quicksort Is Optimal For Many Equal Keys (1608.04906v4)
Published 17 Aug 2016 in cs.DS and math.PR
Abstract: I prove that the average number of comparisons for median-of-$k$ Quicksort (with fat-pivot a.k.a. three-way partitioning) is asymptotically only a constant $\alpha_k$ times worse than the lower bound for sorting random multisets with $\Omega(n\varepsilon)$ duplicates of each value (for any $\varepsilon>0$). The constant is $\alpha_k = \ln(2) / \bigl(H_{k+1}-H_{(k+1)/2} \bigr)$, which converges to 1 as $k\to\infty$, so Quicksort is asymptotically optimal for inputs with many duplicates. This resolves a conjecture by Sedgewick and Bentley (1999, 2002) and constitutes the first progress on the analysis of Quicksort with equal elements since Sedgewick's 1977 article.