Entanglement as an axiomatic foundation for statistical mechanics (1608.04459v2)
Abstract: We propose four information-theoretic axioms for the foundations of statistical mechanics in general physical theories. The axioms---Causality, Purity Preservation, Pure Sharpness, and Purification---identify a class of theories where every mixed state can be modelled as the marginal of a pure entangled state and where every unsharp measurement can be modelled as a sharp measurement on a composite system. This class of theories, called sharp theories with purification, includes quantum theory both with complex and real amplitudes, as well as a suitable extension of classical probability theory where classical systems can be entangled with other, non-classical systems. Theories satisfying our axioms support well-behaved notions of majorization, entropy, and Gibbs states, allowing for an information-theoretic derivation of Landauer's principle. We conjecture that every theory admitting a sensible thermodynamics must be extendable to a sharp theory with purification.