Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Absolutely Minimizing Lipschitz Extensions and Infinity Harmonic Functions on the Sierpinski gasket (1608.03715v2)

Published 12 Aug 2016 in math.AP

Abstract: Aim of this note is to study the infinity Laplace operator and the corresponding Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket in the spirit of the classical construction of Kigami for the Laplacian. We introduce a notion of infinity harmonic functions on pre-fractal sets and we show that these functions solve a Lipschitz extension problem in the discrete setting. Then we prove that the limit of the infinity harmonic functions on the pre-fractal sets solves the Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket.

Summary

We haven't generated a summary for this paper yet.