Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonian for the zeros of the Riemann zeta function (1608.03679v4)

Published 12 Aug 2016 in quant-ph, math-ph, math.FA, math.MP, and math.NT

Abstract: A Hamiltonian operator $\hat H$ is constructed with the property that if the eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function. The classical limit of $\hat H$ is $2xp$, which is consistent with the Berry-Keating conjecture. While $\hat H$ is not Hermitian in the conventional sense, ${\rm i}{\hat H}$ is ${\cal PT}$ symmetric with a broken ${\cal PT}$ symmetry, thus allowing for the possibility that all eigenvalues of $\hat H$ are real. A heuristic analysis is presented for the construction of the metric operator to define an inner-product space, on which the Hamiltonian is Hermitian. If the analysis presented here can be made rigorous to show that ${\hat H}$ is manifestly self-adjoint, then this implies that the Riemann hypothesis holds true.

Summary

We haven't generated a summary for this paper yet.