Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives (1608.03428v1)

Published 11 Aug 2016 in q-fin.MF and math.PR

Abstract: Replacing Black-Scholes' driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the financial market. We present the development, testing, and implementation of a simplified alternative to using fractional Brownian motion for pricing derivatives. By relaxing the assumption of past independence of Brownian motion but retaining the Markovian property, we are developing a competing model that retains the mathematical simplicity of the standard Black-Scholes model but also has the improved accuracy of allowing for past dependence. This is achieved by replacing Black-Scholes' underlying process, Brownian motion, with a particular Gaussian Markov process, proposed by Vladimir Dobri\'{c} and Francisco Ojeda.

Summary

We haven't generated a summary for this paper yet.