Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse recovery via Orthogonal Least-Squares under presence of Noise (1608.02554v1)

Published 8 Aug 2016 in stat.ML, cs.IT, and math.IT

Abstract: We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a $m$-dimensional $k$-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algorithm. In addition, This framework is employed to provide probabilistic guarantees for the case that the coefficient matrix is drawn at random according to Gaussian or Bernoulli distribution where we exploit some concentration properties. It is shown that under certain conditions, OLS recovers the true support in $k$ iterations with high probability. This in turn demonstrates that ${\cal O}\left(k\log m\right)$ measurements is sufficient for exact recovery of sparse signals via OLS.

Citations (2)

Summary

We haven't generated a summary for this paper yet.