Papers
Topics
Authors
Recent
2000 character limit reached

Quantum algorithms for abelian difference sets and applications to dihedral hidden subgroups

Published 5 Aug 2016 in quant-ph and cs.ET | (1608.02005v1)

Abstract: Difference sets are basic combinatorial structures that have applications in signal processing, coding theory, and cryptography. We consider the problem of identifying a shifted version of the characteristic function of a (known) difference set. We present a generic quantum algorithm that can be used to tackle any hidden shift problem for any difference set in any abelian group. We discuss special cases of this framework where the resulting quantum algorithm is efficient. This includes: a) Paley difference sets based on quadratic residues in finite fields, which allows to recover the shifted Legendre function quantum algorithm, b) Hadamard difference sets, which allows to recover the shifted bent function quantum algorithm, and c) Singer difference sets based on finite geometries. The latter class allows us to define instances of the dihedral hidden subgroup problem that can be efficiently solved on a quantum computer.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.