Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

De-Conflated Semantic Representations (1608.01961v1)

Published 5 Aug 2016 in cs.CL and cs.AI

Abstract: One major deficiency of most semantic representation techniques is that they usually model a word type as a single point in the semantic space, hence conflating all the meanings that the word can have. Addressing this issue by learning distinct representations for individual meanings of words has been the subject of several research studies in the past few years. However, the generated sense representations are either not linked to any sense inventory or are unreliable for infrequent word senses. We propose a technique that tackles these problems by de-conflating the representations of words based on the deep knowledge it derives from a semantic network. Our approach provides multiple advantages in comparison to the past work, including its high coverage and the ability to generate accurate representations even for infrequent word senses. We carry out evaluations on six datasets across two semantic similarity tasks and report state-of-the-art results on most of them.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohammad Taher Pilehvar (43 papers)
  2. Nigel Collier (83 papers)
Citations (91)

Summary

We haven't generated a summary for this paper yet.