Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Ensemble-driven support vector clustering: From ensemble learning to automatic parameter estimation (1608.01198v2)

Published 3 Aug 2016 in cs.LG

Abstract: Support vector clustering (SVC) is a versatile clustering technique that is able to identify clusters of arbitrary shapes by exploiting the kernel trick. However, one hurdle that restricts the application of SVC lies in its sensitivity to the kernel parameter and the trade-off parameter. Although many extensions of SVC have been developed, to the best of our knowledge, there is still no algorithm that is able to effectively estimate the two crucial parameters in SVC without supervision. In this paper, we propose a novel support vector clustering approach termed ensemble-driven support vector clustering (EDSVC), which for the first time tackles the automatic parameter estimation problem for SVC based on ensemble learning, and is capable of producing robust clustering results in a purely unsupervised manner. Experimental results on multiple real-world datasets demonstrate the effectiveness of our approach.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.