Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption (1607.07757v2)

Published 26 Jul 2016 in math.PR

Abstract: Consider a Markov chain $(X_n){n\geqslant 0}$ with values in the state space $\mathbb X$. Let $f$ be a real function on $\mathbb X$ and set $S_0=0,$ $S_n = f(X_1)+\cdots + f(X_n),$ $n\geqslant 1$. Let $\mathbb P_x$ be the probability measure generated by the Markov chain starting at $X_0=x$. For a starting point $y \in \mathbb R$ denote by $\tau_y$ the first moment when the Markov walk $(y+S_n){n\geqslant 1}$ becomes non-positive. Under the condition that $S_n$ has zero drift, we find the asymptotics of the probability $\mathbb P_x ( \tau_y >n )$ and of the conditional law $\mathbb P_x ( y+S_n\leqslant \cdot\sqrt{n} | \tau_y >n )$ as $n\to +\infty.$

Summary

We haven't generated a summary for this paper yet.