Low growth equational complexity (1607.07156v2)
Abstract: The equational complexity function $\beta_\mathscr{V}:\mathbb{N}\to\mathbb{N}$ of an equational class of algebras $\mathscr{V}$ bounds the size of equation required to determine membership of $n$-element algebras in $\mathscr{V}$. Known examples of finitely generated varieties $\mathscr{V}$ with unbounded equational complexity have growth in $\Omega(nc)$, usually for $c\geq \frac{1}{2}$. We show that much slower growth is possible, exhibiting $O(\log_23(n))$ growth amongst varieties of semilattice ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational complexity function, bounded if and only if all Sylow subgroups are abelian.