Incremental $2$-Edge-Connectivity in Directed Graphs
Abstract: In this paper, we initiate the study of the dynamic maintenance of $2$-edge-connectivity relationships in directed graphs. We present an algorithm that can update the $2$-edge-connected blocks of a directed graph with $n$ vertices through a sequence of $m$ edge insertions in a total of $O(mn)$ time. After each insertion, we can answer the following queries in asymptotically optimal time: (i) Test in constant time if two query vertices $v$ and $w$ are $2$-edge-connected. Moreover, if $v$ and $w$ are not $2$-edge-connected, we can produce in constant time a "witness" of this property, by exhibiting an edge that is contained in all paths from $v$ to $w$ or in all paths from $w$ to $v$. (ii) Report in $O(n)$ time all the $2$-edge-connected blocks of $G$. To the best of our knowledge, this is the first dynamic algorithm for $2$-connectivity problems on directed graphs, and it matches the best known bounds for simpler problems, such as incremental transitive closure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.