Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meromorphic quadratic differentials with complex residues and spiralling foliations (1607.06931v1)

Published 23 Jul 2016 in math.GT and math.CV

Abstract: A meromorphic quadratic differential with poles of order two, on a compact Riemann surface, induces a measured foliation on the surface, with a spiralling structure at any pole that is determined by the complex residue of the differential at the pole. We introduce the space of such measured foliations, and prove that for a fixed Riemann surface, any such foliation is realized by a quadratic differential with second order poles at marked points. Furthermore, such a differential is uniquely determined if one prescribes complex residues at the poles that are compatible with the transverse measures around them. This generalizes a theorem of Hubbard and Masur concerning holomorphic quadratic differentials on closed surfaces, as well as a theorem of Strebel for the case when the foliation has only closed leaves. The proof involves taking a compact exhaustion of the surface, and considering a sequence of equivariant harmonic maps to real trees that do not have a uniform bound on total energy.

Summary

We haven't generated a summary for this paper yet.