Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank Correlation Measure: A Representational Transformation for Biometric Template Protection (1607.06902v1)

Published 23 Jul 2016 in cs.CV and cs.CR

Abstract: Despite a variety of theoretical-sound techniques have been proposed for biometric template protection, there is rarely practical solution that guarantees non-invertibility, cancellability, non-linkability and performance simultaneously. In this paper, a ranking-based representational transformation is proposed for fingerprint templates. The proposed method transforms a real-valued feature vector into index code such that the pairwise-order measure in the resultant codes are closely correlated with rank similarity measure. Such a ranking based technique offers two major merits: 1) Resilient to noises/perturbations in numeric values; and 2) Highly nonlinear embedding based on partial order statistics. The former takes care of the accuracy performance mitigating numeric noises/perturbations while the latter offers strong non-invertible transformation via nonlinear feature embedding from Euclidean to Rank space that leads to toughness in inversion. The experimental results demonstrate reasonable accuracy performance on benchmark FVC2002 and FVC2004 fingerprint databases, thus confirm the proposition of the rank correlation. Moreover, the security and privacy analysis justify the strong capability against the existing major privacy attacks.

Summary

We haven't generated a summary for this paper yet.