Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Onsager-corrected deep learning for sparse linear inverse problems (1607.05966v1)

Published 20 Jul 2016 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.

Citations (88)

Summary

We haven't generated a summary for this paper yet.