Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Local-Global LDA Model for Discovering Geographical Topics from Social Media (1607.05806v1)

Published 20 Jul 2016 in cs.IR

Abstract: Micro-blogging services can track users' geo-locations when users check-in their places or use geo-tagging which implicitly reveals locations. This "geo tracking" can help to find topics triggered by some events in certain regions. However, discovering such topics is very challenging because of the large amount of noisy messages (e.g. daily conversations). This paper proposes a method to model geographical topics, which can filter out irrelevant words by different weights in the local and global contexts. Our method is based on the Latent Dirichlet Allocation (LDA) model but each word is generated from either a local or a global topic distribution by its generation probabilities. We evaluated our model with data collected from Weibo, which is currently the most popular micro-blogging service for Chinese. The evaluation results demonstrate that our method outperforms other baseline methods in several metrics such as model perplexity, two kinds of entropies and KL-divergence of discovered topics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siwei Qiang (3 papers)
  2. Yongkun Wang (6 papers)
  3. Yaohui Jin (40 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.