Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

A self-adaptive moving mesh method for the short pulse equation via its hodograph link to the sine-Gordon equation (1607.05790v1)

Published 20 Jul 2016 in math.NA

Abstract: The short pulse equation was introduced by Schaefer--Wayne (2004) for modeling the propagation of ultrashort optical pulses. While it can describe a wide range of solutions, its ultrashort pulse solutions with a few cycles, which the conventional nonlinear Schroedinger equation does not possess, have drawn much attention. In such a region, existing numerical methods turn out to require very fine numerical mesh, and accordingly are computationally expensive. In this paper, we establish a new efficient numerical method by combining the idea of the hodograph transformation and the structure-preserving numerical methods. The resulting scheme is a self-adaptive moving mesh scheme that can successfully capture not only the ultrashort pulses but also exotic solutions such as loop soliton solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.