Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sectoral co-movements in the Indian stock market: A mesoscopic network analysis (1607.05514v1)

Published 19 Jul 2016 in q-fin.GN

Abstract: In this article we review several techniques to extract information from stock market data. We discuss recurrence analysis of time series, decomposition of aggregate correlation matrices to study co-movements in financial data, stock level partial correlations with market indices, multidimensional scaling and minimum spanning tree. We apply these techniques to daily return time series from the Indian stock market. The analysis allows us to construct networks based on correlation matrices of individual stocks in one hand and on the other, we discuss dynamics of market indices. Thus both micro level and macro level dynamics can be analyzed using such tools. We use the multi-dimensional scaling methods to visualize the sectoral structure of the stock market, and analyze the comovements among the sectoral stocks. Finally, we construct a mesoscopic network based on sectoral indices. Minimum spanning tree technique is seen to be extremely useful in order to separate technologically related sectors and the mapping corresponds to actual production relationship to a reasonable extent.

Summary

We haven't generated a summary for this paper yet.