Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Images Part by Part with Composite Generative Adversarial Networks (1607.05387v2)

Published 19 Jul 2016 in cs.AI, cs.CV, and cs.LG

Abstract: Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates some part of the image. Those parts are combined by alpha blending process to create a new single image. It can generate, for example, background and face sequentially with two generators, after training on face dataset. Training was done in an unsupervised way without any labels about what each generator should generate. We found possibilities of learning the structure by using this generative model empirically.

Citations (40)

Summary

We haven't generated a summary for this paper yet.