Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Complexity Recursive Convolutional Precoding for OFDM-based Large-Scale Antenna System (1607.05345v1)

Published 18 Jul 2016 in cs.IT and math.IT

Abstract: Large-scale antenna (LSA) has gained a lot of attention recently since it can significantly improve the performance of wireless systems. Similar to multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM, LSA can be also combined with OFDM to deal with frequency selectivity in wireless channels. However, such combination suffers from substantially increased complexity proportional to the number of antennas in LSA systems. For the conventional implementation of LSA-OFDM, the number of inverse fast Fourier transforms (IFFTs) increases with the antenna number since each antenna requires an IFFT for OFDM modulation. Furthermore, zero-forcing (ZF) precoding is required in LSA systems to support more users, and the required matrix inversion leads to a huge computational burden. In this paper, we propose a low-complexity recursive convolutional precoding to address the issues above. The traditional ZF precoding can be implemented through the recursive convolutional precoding in the time domain so that only one IFFT is required for each user and the matrix inversion can be also avoided. Simulation results show that the proposed approach can achieve the same performance as that of ZF but with much lower complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.