Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

On Social Optima of Non-Cooperative Mean Field Games (1607.04182v4)

Published 14 Jul 2016 in math.OC

Abstract: This paper studies the connections between mean-field games and the social welfare optimization problems. We consider a mean field game in functional spaces with a large population of agents, each of which seeks to minimize an individual cost function. The cost functions of different agents are coupled through a mean field term that depends on the mean of the population states. We show that under some mild conditions any $\epsilon$-Nash equilibrium of the mean field game coincides with the optimal solution to a convex social welfare optimization problem. The results are proved based on a general formulation in the functional spaces and can be applied to a variety of mean field games studied in the literature. Our result also implies that the computation of the mean field equilibrium can be cast as a convex optimization problem, which can be efficiently solved by a decentralized primal dual algorithm. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)