Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

The quasilinear theory in the approach of long-range systems to quasi-stationary states (1607.04165v1)

Published 14 Jul 2016 in cond-mat.stat-mech

Abstract: We develop a quasilinear theory of the Vlasov equation in order to describe the approach of systems with long-range interactions to quasi-stationary states. We derive a diffusion equation governing the evolution of the velocity distribution of the system towards a steady state. This steady state is expected to correspond to the angle-averaged quasi-stationary distribution function reached by the Vlasov equation as a result of a violent relaxation. We compare the prediction of the quasilinear theory to direct numerical simulations of the Hamiltonian Mean Field model, starting from an unstable spatially homogeneous distribution, either Gaussian or semi-elliptical. We find that the quasilinear theory works reasonably well for weakly unstable initial conditions and that it is able to predict the energy marking the out-of-equilibrium phase transition between unmagnetized and magnetized quasi-stationary states. At energies lower than the out-of-equilibrium transition the quasilinear theory works less well, the disagreement with the numerical simulations increasing by decreasing the energy. In that case, we observe, in agreement with our previous numerical study [A. Campa and P.-H. Chavanis, Eur. Phys. J. B 86, 170 (2013)], that the quasi-stationary states are remarkably well fitted by polytropic distributions (Tsallis distributions) with index $n=2$ (Gaussian case) or $n=1$ (semi-elliptical case). In particular, these polytropic distributions are able to account for the region of negative specific heats in the out-of-equilibrium caloric curve, unlike the Boltzmann and Lynden-Bell distributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.