Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster size distributions of extreme values for the Poisson-Voronoi tessellation (1607.04075v1)

Published 14 Jul 2016 in math.PR

Abstract: We consider the Voronoi tessellation based on a homogeneous Poisson point process in $\mathbf{R}{d}$. For a geometric characteristic of the cells (e.g. the inradius, the circumradius, the volume), we investigate the point process of the nuclei of the cells with large values. Conditions are obtained for the convergence in distribution of this point process of exceedances to a homogeneous compound Poisson point process. We provide a characterization of the asymptotic cluster size distribution which is based on the Palm version of the point process of exceedances. This characterization allows us to compute efficiently the values of the extremal index and the cluster size probabilities by simulation for various geometric characteristics. The extension to the Poisson-Delaunay tessellation is also discussed.

Summary

We haven't generated a summary for this paper yet.