Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Complexity Analysis of Two Classic TSP Variants (1607.02725v1)

Published 10 Jul 2016 in cs.DS and cs.CG

Abstract: We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of $n$ points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in $O(n2)$ time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in $O(n \log2 n)$ time and its bottleneck version in $O(n \log3 n)$ time. Our second set of results concerns the popular $k$-OPT heuristic for TSP in the graph setting. More precisely, we study the $k$-OPT decision problem, which asks whether a given tour can be improved by a $k$-OPT move that replaces $k$ edges in the tour by $k$ new edges. A simple algorithm solves $k$-OPT in $O(nk)$ time for fixed $k$. For 2-OPT, this is easily seen to be optimal. For $k=3$ we prove that an algorithm with a runtime of the form $\tilde{O}(n{3-\epsilon})$ exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for $k=2,3$ may suggest that the actual time complexity of $k$-OPT is $\Theta(nk)$. We show that this is not the case, by presenting an algorithm that finds the best $k$-move in $O(n{\lfloor 2k/3 \rfloor + 1})$ time for fixed $k \geq 3$. This implies that 4-OPT can be solved in $O(n3)$ time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for $k=2$ in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.

Citations (28)

Summary

We haven't generated a summary for this paper yet.