Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model order reduction approaches for infinite horizon optimal control problems via the HJB equation (1607.02337v1)

Published 8 Jul 2016 in math.OC

Abstract: We investigate feedback control for infinite horizon optimal control problems for partial differential equations. The method is based on the coupling between Hamilton-Jacobi-BeLLMan (HJB) equations and model reduction techniques. It is well-known that HJB equations suffer the so called curse of dimensionality and, therefore, a reduction of the dimension of the system is mandatory. In this report we focus on the infinite horizon optimal control problem with quadratic cost functionals. We compare several model reduction methods such as Proper Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati equation based approach. Finally, we present numerical examples and discuss several features of the different methods analyzing advantages and disadvantages of the reduction methods.

Summary

We haven't generated a summary for this paper yet.