Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Comparison of ML and MAP Detectors for Multidimensional Constellations (1607.01818v3)

Published 6 Jul 2016 in cs.IT and math.IT

Abstract: A classical problem in digital communications is to evaluate the symbol error probability (SEP) and bit error probability (BEP) of a multidimensional constellation over an additive white Gaussian noise channel. In this paper, we revisit this problem for nonequally likely symbols and study the asymptotic behavior of the optimal maximum a posteriori (MAP) detector. Exact closed-form asymptotic expressions for SEP and BEP for arbitrary constellations and input distributions are presented. The well-known union bound is proven to be asymptotically tight under general conditions. The performance of the practically relevant maximum likelihood (ML) detector is also analyzed. Although the decision regions with MAP detection converge to the ML regions at high signal-to-noise ratios, the ratio between the MAP and ML detector in terms of both SEP and BEP approach a constant, which depends on the constellation and a priori probabilities. Necessary and sufficient conditions for asymptotic equivalence between the MAP and ML detectors are also presented.

Citations (11)

Summary

We haven't generated a summary for this paper yet.