Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Isomorphism Extension Theorem for Landau-Ginzburg B-Models (1607.01342v1)

Published 5 Jul 2016 in math.AG

Abstract: Landau-Ginzburg mirror symmetry studies isomorphisms between A- and B-models, which are graded Frobenius algebras that are constructed using a weighted homogeneous polynomial $W$ and a related group of symmetries $G$ of $W$. It is known that given two polynomials $W_{1}$, $W_{2}$ with the same weights and same group $G$, the corresponding A-models built with ($W_{1}$,$G$) and ($W_{2}$,$G$) are isomorphic. Though the same result cannot hold in full generality for B-models, which correspond to orbifolded Milnor rings, we provide a partial analogue. In particular, we exhibit conditions where isomorphisms between unorbifolded B-models (or Milnor rings) can extend to isomorphisms between their corresponding orbifolded B-models (or orbifolded Milnor rings).

Summary

We haven't generated a summary for this paper yet.