Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

On the maximum of the C$β$E field (1607.00243v2)

Published 1 Jul 2016 in math.PR, math-ph, math.CA, math.CV, and math.MP

Abstract: In this paper, we investigate the extremal values of (the logarithm of) the characteristic polynomial of a random unitary matrix whose spectrum is distributed according the Circular Beta Ensemble (C$\beta$E). More precisely, if $X_n$ is this characteristic polynomial and $\mathbb{U}$ the unit circle, we prove that: $$\sup_{z \in \mathbb{U} } \Re \log X_n(z) = \sqrt{\frac{2}{\beta}} \left(\log n - \frac{3}{4} \log \log n + \mathcal{O}(1) \right)\ ,$$ as well as an analogous statement for the imaginary part. The notation $\mathcal{O}(1)$ means that the corresponding family of random variables, indexed by $n$, is tight. This answers a conjecture of Fyodorov, Hiary and Keating, originally formulated for the case where $\beta$ equals to $2$, which corresponds to the CUE field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.