Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

A two-sided analogue of the Coxeter complex (1607.00086v1)

Published 1 Jul 2016 in math.CO

Abstract: For any Coxeter system $(W,S)$ of rank $n$, we introduce an abstract boolean complex (simplicial poset) of dimension $2n-1$ that contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples $(I,w,J)$, where $I$ and $J$ are subsets of the set $S$ of simple generators, and $w$ is a minimal length representative for the parabolic double coset $W_I w W_J$. There is exactly one maximal face for each element of the group $W$. The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the $h$-polynomial is given by the "two-sided" $W$-Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in $W$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube