Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Generalised Colouring Numbers on Classes of Bounded Expansion (1606.08972v1)

Published 29 Jun 2016 in cs.DM and math.CO

Abstract: The generalised colouring numbers $\mathrm{adm}_r(G)$, $\mathrm{col}_r(G)$, and $\mathrm{wcol}_r(G)$ were introduced by Kierstead and Yang as generalisations of the usual colouring number, also known as the degeneracy of a graph, and have since then found important applications in the theory of bounded expansion and nowhere dense classes of graphs, introduced by Ne\v{s}et\v{r}il and Ossona de Mendez. In this paper, we study the relation of the colouring numbers with two other measures that characterise nowhere dense classes of graphs, namely with uniform quasi-wideness, studied first by Dawar et al. in the context of preservation theorems for first-order logic, and with the splitter game, introduced by Grohe et al. We show that every graph excluding a fixed topological minor admits a universal order, that is, one order witnessing that the colouring numbers are small for every value of $r$. Finally, we use our construction of such orders to give a new proof of a result of Eickmeyer and Kawarabayashi, showing that the model-checking problem for successor-invariant first-order formulas is fixed-parameter tractable on classes of graphs with excluded topological minors.

Citations (23)

Summary

We haven't generated a summary for this paper yet.