Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Leveraging Semantic Web Search and Browse Sessions for Multi-Turn Spoken Dialog Systems (1606.07967v1)

Published 25 Jun 2016 in cs.CL

Abstract: Training statistical dialog models in spoken dialog systems (SDS) requires large amounts of annotated data. The lack of scalable methods for data mining and annotation poses a significant hurdle for state-of-the-art statistical dialog managers. This paper presents an approach that directly leverage billions of web search and browse sessions to overcome this hurdle. The key insight is that task completion through web search and browse sessions is (a) predictable and (b) generalizes to spoken dialog task completion. The new method automatically mines behavioral search and browse patterns from web logs and translates them into spoken dialog models. We experiment with naturally occurring spoken dialogs and large scale web logs. Our session-based models outperform the state-of-the-art method for entity extraction task in SDS. We also achieve better performance for both entity and relation extraction on web search queries when compared with nontrivial baselines.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.