Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bandwidth selection in deconvolution kernel distribution estimators defined by stochastic approximation method with Laplace errors (1606.07948v1)

Published 25 Jun 2016 in math.ST and stat.TH

Abstract: In this paper we consider the kernel estimators of a distribution function defined by the stochastic approximation algorithm when the observation are contamined by measurement errors. It is well known that this estimators depends heavily on the choice of a smoothing parameter called the bandwidth. We propose a specific second generation plug-in method of the deconvolution kernel distribution estimators defined by the stochastic approximation algorithm. We show that, using the proposed bandwidth selection and the stepsize which minimize the MISE (Mean Integrated Squared Error), the proposed estimator will be better than the classical one for small sample setting when the error variance is controlled by the noise to signal ratio. We corroborate these theoretical results through simulations and a real dataset.

Summary

We haven't generated a summary for this paper yet.