Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operators on the Banach space of $p$-continuous vector-valued functions (1606.07202v1)

Published 23 Jun 2016 in math.FA

Abstract: Let $X$, $Y$, and $Z$ be Banach spaces, and let $\alpha$ be a tensor norm. Let a bounded linear operator $S\in\mathcal{L}(Z,\mathcal{L}(X,Y))$ be given. We obtain (necessary and/or sufficient) conditions for the existence of an operator $U\in\mathcal{L}(Z\hat{\otimes}{\alpha}X,Y)$ such that $(Sz)x = U(z\otimes x)$, for all $z\in Z$ and $x\in X$, i.e., $S= U{#}$, the associated operator to $U$. Let $\Omega$ be a compact Hausdorff space and denote by $\mathcal{C}(\Omega)$ the space of continuous functions from $\Omega$ into $\mathbb{K}$. We apply these results to $S\in\mathcal{L}(\mathcal{C}(\Omega),\mathcal{L}(X, Y))$ for characterizing the existence of an operator $U\in\mathcal{L}(\mathcal{C}{p}(\Omega,X),Y)$ such that $U{#}=S$, where $\mathcal{C}_{p}(\Omega,X)$ is the space of $p$-continuous $X$-valued functions, $1\leq p \leq \infty$.

Summary

We haven't generated a summary for this paper yet.