Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No local $L^{1}$ solutions for semilinear fractional heat equations (1606.07145v1)

Published 23 Jun 2016 in math.AP

Abstract: We study the Cauchy problem for the semilinear fractional heat equation $u_{t}=\triangle{\alpha/2}u+f(u)$ with non-negative initial value $u_{0}\in L{q}(\mathbb{R}{n})$ and locally Lipschitz, non-negative source term $f$. For $f$ satisfying the Osgood-type condition $\int_{1}{\infty}\frac{ds}{f(s)}=\infty$, we show that there exist initial conditions such that the equation has no local solution in $L{1}_{loc}(\mathbb{R}{n})$.

Summary

We haven't generated a summary for this paper yet.