Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emulating Human Conversations using Convolutional Neural Network-based IR (1606.07056v1)

Published 22 Jun 2016 in cs.AI, cs.CL, and cs.IR

Abstract: Conversational agents ("bots") are beginning to be widely used in conversational interfaces. To design a system that is capable of emulating human-like interactions, a conversational layer that can serve as a fabric for chat-like interaction with the agent is needed. In this paper, we introduce a model that employs Information Retrieval by utilizing convolutional deep structured semantic neural network-based features in the ranker to present human-like responses in ongoing conversation with a user. In conversations, accounting for context is critical to the retrieval model; we show that our context-sensitive approach using a Convolutional Deep Structured Semantic Model (cDSSM) with character trigrams significantly outperforms several conventional baselines in terms of the relevance of responses retrieved.

Citations (19)

Summary

We haven't generated a summary for this paper yet.