Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Regularity for Supercritical Nonlinear Dissipative Wave Equations in 3D (1606.06886v1)

Published 22 Jun 2016 in math.AP

Abstract: The nonlinear wave equation $u_{tt}-\Delta u +|u_t|{p-1}u_t=0$ is shown to be globally well-posed in the Sobolev spaces of radially symmetric functions $Hk_{\rm rad}({\bf R}3)\times H{k-1}_{\rm rad}({\bf R}3)$ for all $p\geq 3$ and $k\geq 3$. Moreover, global $C\infty $ solutions are obtained when the initial data are $C_0\infty$ and exponent $p$ is an odd integer. The radial symmetry allows a reduction to the one-dimensional case where an important observation of A. Haraux (2009) can be applied, i.e., dissipative nonlinear wave equations contract initial data in $W{k,q}({\bf R})\times W{k-1,q}({\bf R})$ for all $k\in[1,2]$ and $q\in [1,\infty]$.

Summary

We haven't generated a summary for this paper yet.