Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Moment Distance Between Sensors and Anchor Points (1606.06865v3)

Published 22 Jun 2016 in cs.DM

Abstract: The present paper contains additional asymptotic result over an earlier investigation of Kapelko and Kranakis. Consider $n$ mobile sensors placed independently at random with the uniform distribution on the unit interval $[0,1]$. Fix $a$ an odd natural number. Let $X_i$ be the the $i-$th closest sensor to $0$ on the interval $[0,1].$ Then the following identity holds $$\sum_{i=1}n\mathbf{E}\left[\left|X_i-\left(\frac{i}{n}-\frac{1}{2n}\right)\right|a\right]=\frac{\Gamma\left(\frac{a}{2}+1\right)}{2{\frac{a}{2}}(1+a)}\frac{1}{n{\frac{a}{2}-1}}+O\left(\frac{1}{n{\frac{a-1}{2}}}\right),$$ when $a$ is an odd natural number, where $\Gamma(z)$ is the Gamma function.

Citations (1)

Summary

We haven't generated a summary for this paper yet.