Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection and Tracking of Liquids with Fully Convolutional Networks (1606.06266v1)

Published 20 Jun 2016 in cs.CV and cs.RO

Abstract: Recent advances in AI and robotics have claimed many incredible results with deep learning, yet no work to date has applied deep learning to the problem of liquid perception and reasoning. In this paper, we apply fully-convolutional deep neural networks to the tasks of detecting and tracking liquids. We evaluate three models: a single-frame network, multi-frame network, and a LSTM recurrent network. Our results show that the best liquid detection results are achieved when aggregating data over multiple frames, in contrast to standard image segmentation. They also show that the LSTM network outperforms the other two in both tasks. This suggests that LSTM-based neural networks have the potential to be a key component for enabling robots to handle liquids using robust, closed-loop controllers.

Citations (17)

Summary

We haven't generated a summary for this paper yet.