Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable motif-aware graph clustering (1606.06235v2)

Published 20 Jun 2016 in cs.DS, cs.DM, cs.SI, and math.CO

Abstract: We develop new methods based on graph motifs for graph clustering, allowing more efficient detection of communities within networks. We focus on triangles within graphs, but our techniques extend to other clique motifs as well. Our intuition, which has been suggested but not formalized similarly in previous works, is that triangles are a better signature of community than edges. We therefore generalize the notion of conductance for a graph to {\em triangle conductance}, where the edges are weighted according to the number of triangles containing the edge. This methodology allows us to develop variations of several existing clustering techniques, including spectral clustering, that minimize triangles split by the cluster instead of edges cut by the cluster. We provide theoretical results in a planted partition model to demonstrate the potential for triangle conductance in clustering problems. We then show experimentally the effectiveness of our methods to multiple applications in machine learning and graph mining.

Citations (159)

Summary

We haven't generated a summary for this paper yet.