Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Essential self-adjointness of powers of first-order differential operators on non-compact manifolds with low-regularity metrics (1606.06190v2)

Published 20 Jun 2016 in math.FA, math.AP, math.DG, and math.SP

Abstract: We consider first-order differential operators with locally bounded measurable coefficients on vector bundles with measurable coefficient metrics. Under a mild set of assumptions, we demonstrate the equivalence between the essential self-adjointness of such operators to a negligible boundary property. When the operator possesses higher regularity coefficients, we show that higher powers are essentially self-adjoint if and only if this condition is satisfied. In the case that the low-regularity Riemannian metric induces a complete length space, we demonstrate essential self-adjointness of the operator and its higher powers up to the regularity of its coefficients. We also present applications to Dirac operators on Dirac bundles when the metric is non-smooth.

Summary

We haven't generated a summary for this paper yet.