Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Learning and Prediction of Application-level Traffic Data in Cellular Networks (1606.04778v2)

Published 15 Jun 2016 in cs.NI and cs.LG

Abstract: Traffic learning and prediction is at the heart of the evaluation of the performance of telecommunications networks and attracts a lot of attention in wired broadband networks. Now, benefiting from the big data in cellular networks, it becomes possible to make the analyses one step further into the application level. In this paper, we firstly collect a significant amount of application-level traffic data from cellular network operators. Afterwards, with the aid of the traffic "big data", we make a comprehensive study over the modeling and prediction framework of cellular network traffic. Our results solidly demonstrate that there universally exist some traffic statistical modeling characteristics, including ALPHA-stable modeled property in the temporal domain and the sparsity in the spatial domain. Meanwhile, the results also demonstrate the distinctions originated from the uniqueness of different service types of applications. Furthermore, we propose a new traffic prediction framework to encompass and explore these aforementioned characteristics and then develop a dictionary learning-based alternating direction method to solve it. Besides, we validate the prediction accuracy improvement and the robustness of the proposed framework through extensive simulation results.

Citations (115)

Summary

We haven't generated a summary for this paper yet.