Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Reconstruction Algorithm for Perturbed Compressive Sensing Based on Total Least-Squares and Proximal Splitting (1606.04553v1)

Published 14 Jun 2016 in cs.SY and math.OC

Abstract: We consider the problem of finding a sparse solution for an underdetermined linear system of equations when the known parameters on both sides of the system are subject to perturbation. This problem is particularly relevant to reconstruction in fully-perturbed compressive-sensing setups where both the projected measurements of an unknown sparse vector and the knowledge of the associated projection matrix are perturbed due to noise, error, mismatch, etc. We propose a new iterative algorithm for tackling this problem. The proposed algorithm utilizes the proximal-gradient method to find a sparse total least-squares solution by minimizing an l1-regularized Rayleigh-quotient cost function. We determine the step-size of the algorithm at each iteration using an adaptive rule accompanied by backtracking line search to improve the algorithm's convergence speed and preserve its stability. The proposed algorithm is considerably faster than a popular previously-proposed algorithm, which employs the alternating-direction method and coordinate-descent iterations, as it requires significantly fewer computations to deliver the same accuracy. We demonstrate the effectiveness of the proposed algorithm via simulation results.

Citations (17)

Summary

We haven't generated a summary for this paper yet.