Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Fuzzy Logic to Leverage HTML Markup for Web Page Representation (1606.04429v1)

Published 14 Jun 2016 in cs.IR and cs.CL

Abstract: The selection of a suitable document representation approach plays a crucial role in the performance of a document clustering task. Being able to pick out representative words within a document can lead to substantial improvements in document clustering. In the case of web documents, the HTML markup that defines the layout of the content provides additional structural information that can be further exploited to identify representative words. In this paper we introduce a fuzzy term weighing approach that makes the most of the HTML structure for document clustering. We set forth and build on the hypothesis that a good representation can take advantage of how humans skim through documents to extract the most representative words. The authors of web pages make use of HTML tags to convey the most important message of a web page through page elements that attract the readers' attention, such as page titles or emphasized elements. We define a set of criteria to exploit the information provided by these page elements, and introduce a fuzzy combination of these criteria that we evaluate within the context of a web page clustering task. Our proposed approach, called Abstract Fuzzy Combination of Criteria (AFCC), can adapt to datasets whose features are distributed differently, achieving good results compared to other similar fuzzy logic based approaches and TF-IDF across different datasets.

Citations (21)

Summary

We haven't generated a summary for this paper yet.