Lectures on Classical Integrability (1606.02946v2)
Abstract: We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.