Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arbitrage-Free Combinatorial Market Making via Integer Programming (1606.02825v2)

Published 9 Jun 2016 in cs.GT and cs.AI

Abstract: We present a new combinatorial market maker that operates arbitrage-free combinatorial prediction markets specified by integer programs. Although the problem of arbitrage-free pricing, while maintaining a bound on the subsidy provided by the market maker, is #P-hard in the worst case, we posit that the typical case might be amenable to modern integer programming (IP) solvers. At the crux of our method is the Frank-Wolfe (conditional gradient) algorithm which is used to implement a Bregman projection aligned with the market maker's cost function, using an IP solver as an oracle. We demonstrate the tractability and improved accuracy of our approach on real-world prediction market data from combinatorial bets placed on the 2010 NCAA Men's Division I Basketball Tournament, where the outcome space is of size 263. To our knowledge, this is the first implementation and empirical evaluation of an arbitrage-free combinatorial prediction market on this scale.

Citations (5)

Summary

We haven't generated a summary for this paper yet.