Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-shot Visual Recognition by Shrinking and Hallucinating Features (1606.02819v4)

Published 9 Jun 2016 in cs.CV

Abstract: Low-shot visual learning---the ability to recognize novel object categories from very few examples---is a haLLMark of human visual intelligence. Existing machine learning approaches fail to generalize in the same way. To make progress on this foundational problem, we present a low-shot learning benchmark on complex images that mimics challenges faced by recognition systems in the wild. We then propose a) representation regularization techniques, and b) techniques to hallucinate additional training examples for data-starved classes. Together, our methods improve the effectiveness of convolutional networks in low-shot learning, improving the one-shot accuracy on novel classes by 2.3x on the challenging ImageNet dataset.

Citations (49)

Summary

We haven't generated a summary for this paper yet.