Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A near-stationary subspace for ridge approximation (1606.01929v2)

Published 6 Jun 2016 in math.NA

Abstract: Response surfaces are common surrogates for expensive computer simulations in engineering analysis. However, the cost of fitting an accurate response surface increases exponentially as the number of model inputs increases, which leaves response surface construction intractable for high-dimensional, nonlinear models. We describe ridge approximation for fitting response surfaces in several variables. A ridge function is constant along several directions in its domain, so fitting occurs on the coordinates of a low-dimensional subspace of the input space. We review essential theory for ridge approximation---e.g., the best mean-squared approximation and an optimal low-dimensional subspace---and we prove that the gradient-based active subspace is near-stationary for the least-squares problem that defines an optimal subspace. Motivated by the theory, we propose a computational heuristic that uses an estimated active subspace as an initial guess for a ridge approximation fitting problem. We show a simple example where the heuristic fails, which reveals a type of function for which the proposed approach is inappropriate. We then propose a simple alternating heuristic for fitting a ridge function, and we demonstrate the effectiveness of the active subspace initial guess applied to an airfoil model of drag as a function of its 18 shape parameters.

Citations (50)

Summary

We haven't generated a summary for this paper yet.