Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence in distribution norms in the CLT for non identical distributed random variables (1606.01629v3)

Published 6 Jun 2016 in math.PR

Abstract: We study the convergence in distribution norms in the Central Limit Theorem for non identical distributed random variables that is $$ \varepsilon_{n}(f):={\mathbb{E}}\Big(f\Big(\frac 1{\sqrt n}\sum_{i=1}{n}Z_{i}\Big)\Big)-{\mathbb{E}}\big(f(G)\big)\rightarrow 0 $$ where $Z_{i}$ are centred independent random variables and $G$ is a Gaussian random variable. We also consider local developments (Edgeworth expansion). This kind of results is well understood in the case of smooth test functions $f$. If one deals with measurable and bounded test functions (convergence in total variation distance), a well known theorem due to Prohorov shows that some regularity condition for the law of the random variables $Z_{i}$, $i\in {\mathbb{N}}$, on hand is needed. Essentially, one needs that the law of $ Z_{i}$ is locally lower bounded by the Lebesgue measure (Doeblin's condition). This topic is also widely discussed in the literature. Our main contribution is to discuss convergence in distribution norms, that is to replace the test function $f$ by some derivative $\partial_{\alpha }f$ and to obtain upper bounds for $\varepsilon_{n}(\partial_{\alpha }f)$ in terms of the infinite norm of $f$. Some applications are also discussed: an invariance principle for the occupation time for random walks, small balls estimates and expected value of the number of roots of trigonometric polynomials with random coefficients.

Summary

We haven't generated a summary for this paper yet.