Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for Vector-Valued Function Estimation (1606.01487v1)

Published 5 Jun 2016 in stat.ML and cs.LG

Abstract: We present a framework to derive risk bounds for vector-valued learning with a broad class of feature maps and loss functions. Multi-task learning and one-vs-all multi-category learning are treated as examples. We discuss in detail vector-valued functions with one hidden layer, and demonstrate that the conditions under which shared representations are beneficial for multi- task learning are equally applicable to multi-category learning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.